Travaux dirigés¶
Antirésonance¶
Exercice
On considère un dipôle RLC série alimenté par une tension sinusoïdale. On s’intéresse à la tension u aux borne de l’ensemble L+C en régime sinusoïdal forcé.
Déterminer l’amplitude complexe de u puis son amplitude réelle. En déduire la valeur maximale de l’amplitude réelle
.Montrer que l’amplitude s’annule pour une pulsation qu’on déterminera. On parle d’antirésonance.
On définit la bande coupée comme la bande de fréquence pour laquelle l’amplitude réelle
soit telle que . Préciser sa largeur.
Eléments de réponse (sans justification)
L’amplitude de u est maximale aux fréquences extrêmes et s’annule à la pulsation propre. La largeur de la bande coupée est
Circuits couplées¶
Exercice
On considère le circuit ci-dessous. Les deux bobines sont sous influence mutuelle, c’est-à-dire qu’à la tension habituelle d’une bobine s’ajoute pour la bobine du circuit
On supposera de plus que les composants sont égaux deux à deux. Déterminer en régime sinusoïdal forcé les représentations complexes des courants circulant dans chaque circuit puis les charges aux armatures des condensateurs.

Eléments de réponse (sans justification)
Les charges s’obtiennent en divisant par
Adaptation d’impédance¶
Exercice
On considère le circuit ci-dessous. On veut que le dipôle composé des composants L, C variables et

Déterminer suivant les valeurs relatives de
et le circuit permettant cette réalisation et les valeurs de L et C à choisir.Déterminer dans les conditions précédentes la puissance instantanée puis la puissance moyenne reçue par le dipôle équivalent.
Eléments de réponse (sans justification)
Circuit 1 si
Circuit 2 si
Dans les deux cas, la puissance moyenne reçue est
Détection¶
Exercice
On considère un circuit constitué d’une résistance R en série avec un condensateur C. L’ensemble est reliée à une source de tension
Déterminer la tension aux bornes du condensateur en régime forcé. Simplifier l’expression par approximation en utilisant les ordres de grandeurs des pulsations mises en jeu.
Eléments de réponse (sans justification)
Système actif.¶
Exercice
On considère le circuit ci-dessous. L’amplificateur linéaire intégré est supposé idéal fonctionnant en régime linéaire. Dans ces conditions, les courants entrant aux bornes + et - de l’amplificateur linéaire intégré sont nuls et la différence de potentiel

Déterminer par une étude rapide les comportements haute et basse fréquence du système pour la tension s.
Déterminer la tension s en régime sinusoïdal forcé et faire son étude fréquentielle (amplitude réelle et déphasage avec l’entrée). On pensera à vérifier la cohérence avec l’étude rapide précédente et à mettre la représentation complexe de s sous forme canonique.
Eléments de réponse (sans justification)
s et nulle à haute et basse fréquence.